Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.171
Filtrar
1.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611871

RESUMO

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Assuntos
Amidas , Endocanabinoides , Etanolaminas , Neuroblastoma , Ácidos Oleicos , Humanos , Neuroblastoma/tratamento farmacológico , Antígeno B7-H1 , Janus Quinases , PPAR alfa , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Transcrição STAT , Transdução de Sinais , Apoptose , Ácidos Palmíticos/farmacologia
2.
J Transl Med ; 22(1): 82, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245790

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS: Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 µM and 5 µM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers ß-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS: In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácido Tióctico , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo , Endorribonucleases/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Hepatócitos/patologia , Senescência Celular , Inflamação/patologia , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Fígado/patologia , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo
3.
ScientificWorldJournal ; 2023: 9919814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890980

RESUMO

In this study, Arthrospira fusiformis previously isolated from Lake Mariout (Alexandria, Egypt) was cultivated in the laboratory using a medium for pharmaceutical grade Arthrospira, named as Amara and Steinbüchel medium. Hot water extract of the Egyptian Spirulina was prepared by autoclaving dried biomass in distilled water at 121°C for 15 min. This algal water extract was analyzed by GC-MS to evaluate its volatile compounds and fatty acids composition. The antimicrobial activity of phycobiliprotein extract from Arthrospira fusiformis using phosphate buffer was evaluated against thirteen microbial strains (two Gram-positive bacteria, eight Gram-negative bacteria, one yeast, and two filamentous fungi). The major components of fatty acids in the hot extract of Egyptian A. fusiformis were hexadecanoic acid (palmitic acid, 55.19%) and octadecanoic acid (stearic acid, 27.14%). The main constituents of its volatile compounds were acetic acid (43.33%) and oxalic acid (47.98%). The most potent antimicrobial effect of phycobiliprotein extract was obtained against two Gram-negative bacteria Salmonella typhi and Proteus vulgaris, filamentous fungus Aspergillus niger, and the pathogenic yeast Candida albicans (all of which showed MIC values of 58.1 µg/ml). Escherichia coli and Salmonella typhimurium come second in their susceptibility to the phycobiliprotein extract from Arthrospira fusiformis and Serratia marcescens and Aspergillus flavus are the least in susceptibility, with MIC values of 116.2 and 232.5 µg/ml, respectively, while phycobiliprotein extract has no antibacterial effect on methicillin-resistant as well as susceptible Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Shigella sonnei. These findings confirmed the nutritional value of Egyptian A. fusiformis isolated from Lake Mariout and suggest the potential use of this strain as an ingredient in the cooking of some foods to increase the level of stearic acid and palmitic acid. Moreover, its effective antibacterial activities against some important and highly resistant to antibiotics bacterial pathogens in addition to its antifungal effects recommend the therapeutic use of its biomass.


Assuntos
Spirulina , Egito , Ácidos Graxos/farmacologia , Lagos , Antifúngicos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Leveduras , Candida albicans , Água/farmacologia , Ácidos Esteáricos/farmacologia , Ácidos Palmíticos/farmacologia , Testes de Sensibilidade Microbiana
4.
Front Cell Infect Microbiol ; 12: 977157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268228

RESUMO

Increased levels of 17-ß estradiol (E2) due to pregnancy in young women or to hormonal replacement therapy in postmenopausal women have long been associated with an increased risk of yeast infections. Nevertheless, the effect underlying the role of E2 in Candida albicans infections is not well understood. To address this issue, functional, transcriptomic, and metabolomic analyses were performed on C. albicans cells subjected to temperature and serum induction in the presence or absence of E2. Increased filament formation was observed in E2 treated cells. Surprisingly, cells treated with a combination of E2 and serum showed decreased filament formation. Furthermore, the transcriptomic analysis revealed that serum and E2 treatment is associated with downregulated expression of genes involved in filamentation, including HWP1, ECE1, IHD1, MEP1, SOD5, and ALS3, in comparison with cells treated with serum or estrogen alone. Moreover, glucose transporter genes HGT20 and GCV2 were downregulated in cells receiving both serum and E2. Functional pathway enrichment analysis of the differentially expressed genes (DEGs) suggested major involvement of E2 signaling in several metabolic pathways and the biosynthesis of secondary metabolites. The metabolomic analysis determined differential secretion of 36 metabolites based on the different treatments' conditions, including structural carbohydrates and fatty acids important for hyphal cell wall formation such as arabinonic acid, organicsugar acids, oleic acid, octadecanoic acid, 2-keto-D-gluconic acid, palmitic acid, and steriacstearic acid with an intriguing negative correlation between D-turanose and ergosterol under E2 treatment. In conclusion, these findings suggest that E2 signaling impacts the expression of several genes and the secretion of several metabolites that help regulate C. albicans morphogenesis and virulence.


Assuntos
Candida albicans , Hifas , Feminino , Humanos , Parede Celular/metabolismo , Ergosterol/metabolismo , Ácidos Graxos/metabolismo , Estrogênios/farmacologia , Polissacarídeos/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/farmacologia , Carboidratos , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Ácidos Oleicos/metabolismo , Ácidos Oleicos/farmacologia , Regulação Fúngica da Expressão Gênica
5.
Sci Rep ; 12(1): 17044, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220839

RESUMO

In this study the essential oils obtained from four different plant species belonging to the Lamiaceae family were extracted by means of hydrodistillation and their composition and antimicrobial activity were evaluated. About 66 components were identified by using gas chromatography-mass spectrometry (GC-MS), and among all, thymol (67.7%), oleic acid (0.5-62.1%), (-)-caryophyllene oxide (0.4-24.8%), α-pinene (1.1-19.4%), 1,8-cineole (0.2-15.4%), palmitic acid (0.32-13.28%), ( +)spathulenol (11.16%), and germacrene D (0.3-10.3%) were the most abundant in all the species tested (i.e. Thymus daenensis, Nepeta sessilifolia, Hymenocrater incanus, and Stachys inflata). In particular, only the composition of essential oils from H. incanus was completely detected (99.13%), while that of the others was only partially detected. Oxygenated monoterpenes (75.57%) were the main compounds of essential oil from T. daenensis; sesquiterpenes hydrocarbons (26.88%) were the most abundant in S. inflata; oxygenated sesquiterpenes (41.22%) were mainly detected in H. incanus essential oil, while the essential oil from N. sessilifolia was mainly composed of non-terpene and fatty acids (77.18%). Due to their slightly different composition, also the antibacterial activity was affected by the essential oil tested. Indeed, the highest antibacterial and antifungal activities were obtained with the essential oil from T. daenensis by means of the inhibition halo (39 ± 1 and 25 ± 0 mm) against Gram-positive strains such as Staphylococcus aureus and Aspergillus brasiliensis. The minimal inhibitory concentration (MIC) and minimal bactericidal/fungicidal concentration (MBC/MFC) of the essential oils obtained from the four species varied from 16 to 2000 µg/mL and were strictly affected by the type of microorganism tested. As an example, the essential oils from H. incanus and S. inflata were the most effective against the Gram-negative bacterium Pseudomonas aeruginosa (MIC 16 and 63 µg/ml, respectively), which is considered one of the most resistant bacterial strain. Therefore, the essential oils obtained from the four species contained a suitable phytocomplexes with potential applications in different commercial area such as agriculture, food, pharmaceutical and cosmetic industries. Moreover, these essential oils can be considered a valuable natural alternative to some synthetic antibiotics, thanks to their ability to control the growth of different bacteria and fungi.


Assuntos
Lamiaceae , Óleos Voláteis , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias , Eucaliptol/farmacologia , Ácidos Graxos/farmacologia , Irã (Geográfico) , Lamiaceae/química , Testes de Sensibilidade Microbiana , Monoterpenos/farmacologia , Óleos Voláteis/química , Ácidos Oleicos/farmacologia , Ácidos Palmíticos/farmacologia , Preparações Farmacêuticas , Timol/farmacologia
6.
Biomolecules ; 12(9)2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36139030

RESUMO

Palmitoylethanolamide (PEA), the naturally occurring amide of ethanolamine and palmitic acid, is an endogenous lipid compound endowed with a plethora of pharmacological functions, including analgesic, neuroprotective, immune-modulating, and anti-inflammatory effects. Although the properties of PEA were first characterized nearly 65 years ago, the identity of the receptor mediating these actions has long remained elusive, causing a period of research stasis. In the last two decades, a renewal of interest in PEA occurred, and a series of interesting studies have demonstrated the pharmacological properties of PEA and clarified its mechanisms of action. Recent findings showed the ability of formulations containing PEA in promoting oligodendrocyte differentiation, which represents the first step for the proper formation of myelin. This evidence opens new and promising research opportunities. White matter defects have been detected in a vast and heterogeneous group of diseases, including age-related neurodegenerative disorders. Here, we summarize the history and pharmacology of PEA and discuss its therapeutic potential in restoring white matter defects.


Assuntos
Ácido Palmítico , Substância Branca , Amidas , Analgésicos , Anti-Inflamatórios/farmacologia , Etanolaminas/farmacologia , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/uso terapêutico
7.
Biomolecules ; 12(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139146

RESUMO

Acute lung injury (ALI) is a common and devastating clinical disorder with a high mortality rate and no specific therapy. The pathophysiology of ALI is characterized by increased alveolar/capillary permeability, lung inflammation, oxidative stress and structural damage to lung tissues, which can progress to acute respiratory distress syndrome (ARDS). Adelmidrol (ADM), an analogue of palmitoylethanolamide (PEA), is known for its anti-inflammatory and antioxidant functions, which are mainly due to down-modulating mast cells (MCs) and promoting endogenous antioxidant defense. The aim of this study is to evaluate the protective effects of ADM in a mice model of ALI, induced by intratracheal administration of lipopolysaccharide (LPS) at the dose of 5 mg/kg. ADM 2% was administered by aerosol 1 and 6 h after LPS instillation. In this study, we clearly demonstrated that ADM reduced lung damage and airway infiltration induced by LPS instillation. At the same time, ADM counteracted the increase in MC number and the expression of specific markers of MC activation, i.e., chymase and tryptase. Moreover, ADM reduced oxidative stress by upregulating antioxidant enzymes as well as modulating the Nf-kB pathway and the resulting pro-inflammatory cytokine release. These results suggest that ADM could be a potential candidate in the management of ALI.


Assuntos
Lesão Pulmonar Aguda , Ácidos Dicarboxílicos , Ácidos Palmíticos , Pneumonia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Anti-Inflamatórios , Antioxidantes/metabolismo , Quimases/metabolismo , Citocinas/metabolismo , Ácidos Dicarboxílicos/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Camundongos , NF-kappa B/metabolismo , Ácidos Palmíticos/farmacologia , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Aerossóis e Gotículas Respiratórios , Triptases/metabolismo , Triptases/farmacologia , Triptases/uso terapêutico
8.
Molecules ; 27(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014457

RESUMO

Oxidative stress has been proposed to be a pathogenic mechanism to induce endothelial dysfunction and the onset of cardiovascular disease. Elevated levels of free fatty acids can cause oxidative stress by increasing mitochondrial uncoupling but, at physiological concentrations, they are essential for cell and tissue function and olive oil free fatty acids have proved to exhibit beneficial effects on risk factors for cardiovascular disease. We hypothesize that realistic concentrations within the physiological range of oleic (OA) and palmitic (PA) acids could be beneficial in the prevention of oxidative stress in vascular endothelium. Hence, pre-treatment and co-treatment with realistic physiological doses of palmitic and oleic acids were tested on cultured endothelial cells submitted to a chemically induced oxidative stress to investigate their potential chemo-protective effect. Cell viability and markers of oxidative status: reactive oxygen species (ROS), reduced glutathione (GSH), malondialdehyde (MDA), glutathione peroxidase (GPx) and glutathione reductase (GR) were evaluated. As a conclusion, the increased ROS generation induced by stress was significantly prevented by a pre- and co-treatment with PA or OA. Moreover, pre- and co-treatment of cells with FFAs recovered the stress-induced MDA concentration to control values and significantly recovered depleted GSH and normalized GPx and GR activities. Finally, pre- and co-treatment of cells with physiological concentrations of PA or OA in the low micromolar range conferred a substantial protection of cell viability against an oxidative insult.


Assuntos
Células Endoteliais , Ácidos Palmíticos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Ácidos Graxos não Esterificados/farmacologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Estresse Oxidativo , Ácidos Palmíticos/farmacologia , Espécies Reativas de Oxigênio/farmacologia
9.
Biomolecules ; 12(8)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36009055

RESUMO

Increasing evidence strongly supports the key role of neuroinflammation in the pathophysiology of neurodegenerative diseases, such as Alzheimer's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Neuroinflammation may alter synaptic transmission contributing to the progression of neurodegeneration, as largely documented in animal models and in patients' studies. In the last few years, palmitoylethanolamide (PEA), an endogenous lipid mediator, and its new composite, which is a formulation constituted of PEA and the well-recognized antioxidant flavonoid luteolin (Lut) subjected to an ultra-micronization process (co-ultraPEALut), has been identified as a potential therapeutic agent in different disorders by exerting potential beneficial effects on neurodegeneration and neuroinflammation by modulating synaptic transmission. In this review, we will show the potential therapeutic effects of PEA in animal models and in patients affected by neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Amidas , Animais , Etanolaminas , Doenças Neurodegenerativas/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/uso terapêutico
10.
J Nutr Biochem ; 106: 109033, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35500830

RESUMO

Prenatal high-fat diet exposure increases hypothalamic neurogenesis events in embryos and programs offspring to be obesity-prone. The molecular mechanism involved in these dietary effects of neurogenesis is unknown. This study investigated the effects of oleic and palmitic acids, which are abundant in a high-fat diet, on the hypothalamic neuronal transcriptome and how these changes impact neurogenesis events. The results show the differential effects of low and high concentrations of oleic or palmitic acid treatment on differential gene transcription. Gene ontology analysis uncovered significant gene enrichment in several cellular pathways involved in gene regulation and protein production, particularly with proliferation, migration, and cell survival. The enriched signaling pathways include Wnt, integrin, PDGF, and apoptosis, in addition to endocrine function signaling pathways CCKR and GnRH. Further examination of proliferation and migration shows low concentrations of oleic acid to stimulate proliferation and high concentrations of both oleic and palmitic acid to stimulate apoptosis. Oleic acid also reduces hypothalamic neuronal migration, with little effect from palmitic acid. The results show the two most abundant fatty acids in a high-fat diet impact hypothalamic neuronal proliferation and migration. The results also uncovered potential signaling pathways affected by oleic and palmitic acid and suggest one mechanism of prenatal high-fat diet-induced neurogenesis events may be through these two abundant fatty acids.


Assuntos
Ácido Palmítico , Ácidos Palmíticos , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/farmacologia , Ácido Oleico/farmacologia , Ácidos Oleicos , Ácido Palmítico/farmacologia , Ácidos Palmíticos/farmacologia , Transcriptoma
11.
Viruses ; 14(5)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35632821

RESUMO

Lipids play a crucial role in the entry and egress of viruses, regardless of whether they are naked or enveloped. Recent evidence shows that lipid involvement in viral infection goes much further. During replication, many viruses rearrange internal lipid membranes to create niches where they replicate and assemble. Because of the close connection between lipids and inflammation, the derangement of lipid metabolism also results in the production of inflammatory stimuli. Due to its pivotal function in the viral life cycle, lipid metabolism has become an area of intense research to understand how viruses seize lipids and to design antiviral drugs targeting lipid pathways. Palmitoylethanolamide (PEA) is a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that also counteracts SARS-CoV-2 entry and its replication. Our work highlights for the first time the antiviral potency of PEA against SARS-CoV-2, exerting its activity by two different mechanisms. First, its binding to the SARS-CoV-2 S protein causes a drop in viral infection of ~70%. We show that this activity is specific for SARS-CoV-2, as it does not prevent infection by VSV or HSV-2, other enveloped viruses that use different glycoproteins and entry receptors to mediate their entry. Second, we show that in infected Huh-7 cells, treatment with PEA dismantles lipid droplets, preventing the usage of these vesicular bodies by SARS-CoV-2 as a source of energy and protection against innate cellular defenses. This is not surprising since PEA activates PPAR-α, a transcription factor that, once activated, generates a cascade of events that leads to the disruption of fatty acid droplets, thereby bringing about lipid droplet degradation through ß-oxidation. In conclusion, the present work demonstrates a novel mechanism of action for PEA as a direct and indirect antiviral agent against SARS-CoV-2. This evidence reinforces the notion that treatment with this compound might significantly impact the course of COVID-19. Indeed, considering that the protective effects of PEA in COVID-19 are the current objectives of two clinical trials (NCT04619706 and NCT04568876) and given the relative lack of toxicity of PEA in humans, further preclinical and clinical tests will be needed to fully consider PEA as a promising adjuvant therapy in the current COVID-19 pandemic or against emerging RNA viruses that share the same route of replication as coronaviruses.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Amidas , Antivirais/farmacologia , Antivirais/uso terapêutico , Etanolaminas , Humanos , Ácidos Palmíticos/farmacologia , Pandemias , Receptores Ativados por Proliferador de Peroxissomo , Glicoproteína da Espícula de Coronavírus
12.
Biomolecules ; 12(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35625595

RESUMO

Palmitoylethanolamide (PEA) stands out among endogenous lipid mediators for its neuroprotective, anti-inflammatory, and analgesic functions. PEA belonging to the N-acetylanolamine class of phospholipids was first isolated from soy lecithin, egg yolk, and peanut flour. It is currently used for the treatment of different types of neuropathic pain, such as fibromyalgia, osteoarthritis, carpal tunnel syndrome, and many other conditions. The properties of PEA, especially of its micronized or ultra-micronized forms maximizing bioavailability and efficacy, have sparked a series of innovative research to evaluate its possible application as therapeutic agent for neurodegenerative diseases. Neurodegenerative diseases are widespread throughout the world, and although they are numerous and different, they share common patterns of conditions that result from progressive damage to the brain areas involved in mobility, muscle coordination and strength, mood, and cognition. The present review is aimed at illustrating in vitro and in vivo research, as well as human studies, using PEA treatment, alone or in combination with other compounds, in the presence of neurodegeneration. Namely, attention has been paid to the effects of PEA in counteracting neuroinflammatory conditions and in slowing down the progression of diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Literature research demonstrated the efficacy of PEA in addressing the damage typical of major neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Roedores , Amidas , Animais , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/uso terapêutico
13.
Neurosci Lett ; 781: 136648, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35469820

RESUMO

Intracerebral hemorrhage is a type of acute cerebrovascular disease that remains one of the main causes of death and disability. After the onset of ICH, different types of severe pathophysiological changes can cause great damage to brain tissue, including neuroinflammation. Our study demonstrated the effect of PEA on modulating microglia phenotype and neuroinflammation, as well as the possible underlying mechanisms after ICH for the first time. The phenotypic transformation of microglia and simulation of neuroinflammation after ICH in vitro was induced by hemoglobin on BV2 cells. Additionally, the experiment in vivo model was induced by collagenase injection in mice. The role of PEA on hematoma clearance was also discussed. Western blot, ELISA and immunofluorescence staining were used to determine the phenotypic polarization of microglia and neuroinflammation. In order to evaluate the role of PPAR-α in the anti-inflammatory effect of PEA after ICH, the PPAR-α antagonist GW6471 was utilized. Behavior tests examined the effect of PEA on improving neuronal function. Our results showed that PEA can ameliorate neuroinflammation by inhibiting upregulation of NF-κB, IL-1ß and TNF-α, both in vivo and in vitro. Additionally, PEA can improve motor function in ICH mice and promotes hematoma clearance. At the same time, PEA can increase the levels of PPAR-α in the nucleus. Hence, PPAR-α antagonists can reverse the protective effects of PEA on neuroinflammation. These results suggest that PEA is involved in microglia polarization, attenuating the activation of neuroinflammation, as well as improving motor function after ICH. This, at least in part, may contribute to the involvement of PPAR-α modulation of NF-κB.


Assuntos
Etanolaminas , NF-kappa B , PPAR alfa , Ácidos Palmíticos , Amidas/farmacologia , Animais , Hemorragia Cerebral/tratamento farmacológico , Etanolaminas/farmacologia , Hematoma/tratamento farmacológico , Hematoma/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , PPAR alfa/metabolismo , Ácidos Palmíticos/farmacologia
14.
J Leukoc Biol ; 112(4): 617-628, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35213745

RESUMO

Tumor-infiltrating monocytes can mature into Macrophages that support tumor survival or that display antitumor properties. To explore mechanisms steering Macrophage maturation, we assessed the effects of supernatants from squamous cell carcinoma cell lines (FaDu and SCC) on monocyte-derived Macrophage maturation. Purified monocytes were incubated in medium or medium supplemented with supernatants from FaDu and SCC9 or the leukemia monocytic cell line, THP-1. Macrophages were examined for markers of maturation (CD14, CD68), activation (HLA-DR, CD86, IL15R), scavenger receptor (CD36), toll-like receptor (TLR4), M2 marker (CD206), immune checkpoint (PD-L1), and intracellular chemokine expression (IP-10). Compared to other conditions, cells incubated with FaDu or SCC9 supernatants displayed enhanced survival, down-regulation of cell surface HLA-DR, CD86, IL-15R, CD36, and intracellular IP-10 expression, and increased cell surface PD-L1, CD14, and CD206 expression. Despite expressing TLR4 and CD14, Macrophages matured in tumor supernatants failed to respond to stimulation with the canonical TLR4 agonist, LPS. These changes were accompanied by a decrease in intracellular phospho-p38 expression in tumor supernatant conditioned Macrophages. Depletion of fatty acids from tumor supernatants or treatment of cell cultures with an inhibitor of fatty acid oxidation, Etomoxir, reversed a number of these phenotypic changes induced by tumor supernatants. Additionally, Macrophages incubated with either palmitic acid or oleic acid developed similar phenotypes as cells incubated in tumor supernatants. Together, these data suggest that fatty acids derived from tumor cells can mediate the maturation of Macrophages into a cell type with limited pro-inflammatory characteristics.


Assuntos
Antígeno B7-H1 , Neoplasias de Cabeça e Pescoço , Antígeno B7-H1/metabolismo , Quimiocina CXCL10/metabolismo , Ácidos Graxos/metabolismo , Antígenos HLA-DR/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Ácidos Oleicos/metabolismo , Ácidos Oleicos/farmacologia , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Receptor 4 Toll-Like/metabolismo
15.
Aging (Albany NY) ; 13(22): 24640-24654, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799468

RESUMO

OBJECTIVE: To observe the inhibitory effects of the peroxisome proliferator-activated receptor alpha (PPARα) agonist palmitoylethanolamide (PEA) on inflammatory responses and oxidative stress injury in rats with spinal cord injury (SCI). METHODS: The SCI rat model was established using modified Allen's method and the changes in rats' joint motion were observed by Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) at 1, 3 and 7 days after modeling, HE Staining and Nissl Staining has been carried out to evaluate the pathological lesion of spinal cords in rats. Besides, Immunohistochemical (IHC) was performed to detect the reactive oxygen species (ROS), expression levels of acrylamide (ACR) and manganese superoxide dismutase (MnSOD) in rat spinal cords, and Western Blotting was applied to measure protein expression levels of nuclear factor-kappa B (NF-κB), B cell lymphoma-2 (Bcl-2), BCL-2 associated X (BAX), phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), phosphorylated (p)-Akt, HO-1, Nrf2, trithorax-1 (TRX-1), Raf-1, MEK, ERK, p-MEK and p-ERK. RESULTS: The PPARα agonist PEA could alleviate SCI in rats, inhibit inflammatory responses, mitigate oxidative stress injury, reduce the apoptotic rate and promote SCI rats motor function recovery. In addition, the PPARα agonist PEA was able to activate the phosphorylation of MEK and ERK, stimulate Nrf-2 translocation into the nucleus and up-regulate the expressions of HO-1 and TRX-1. CONCLUSION: PPARα agonist PEA can relieve SCI in rats by inhibiting inflammatory responses and oxidative stress, which may involve a mechanism associated with the activation of Nrf2/HO-1 via the Raf-1/MEK/ERK pathway.


Assuntos
Amidas/farmacologia , Etanolaminas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , PPAR alfa/agonistas , Ácidos Palmíticos/farmacologia , Traumatismos da Medula Espinal/metabolismo , Animais , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-raf/metabolismo , Ratos , Ratos Sprague-Dawley
16.
Int J Mol Sci ; 22(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34768820

RESUMO

Disseminated intravascular coagulation (DIC) is a severe condition characterized by the systemic formation of microthrombi complicated with bleeding tendency and organ dysfunction. In the last years, it represents one of the most frequent consequences of coronavirus disease 2019 (COVID-19). The pathogenesis of DIC is complex, with cross-talk between the coagulant and inflammatory pathways. The objective of this study is to investigate the anti-inflammatory action of ultramicronized palmitoylethanolamide (um-PEA) in a lipopolysaccharide (LPS)-induced DIC model in rats. Experimental DIC was induced by continual infusion of LPS (30 mg/kg) for 4 h through the tail vein. Um-PEA (30 mg/kg) was given orally 30 min before and 1 h after the start of intravenous infusion of LPS. Results showed that um-PEA reduced alteration of coagulation markers, as well as proinflammatory cytokine release in plasma and lung samples, induced by LPS infusion. Furthermore, um-PEA also has the effect of preventing the formation of fibrin deposition and lung damage. Moreover, um-PEA was able to reduce the number of mast cells (MCs) and the release of its serine proteases, which are also necessary for SARS-CoV-2 infection. These results suggest that um-PEA could be considered as a potential therapeutic approach in the management of DIC and in clinical implications associated to coagulopathy and lung dysfunction, such as COVID-19.


Assuntos
Amidas/uso terapêutico , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Coagulação Intravascular Disseminada/tratamento farmacológico , Etanolaminas/uso terapêutico , Ácidos Palmíticos/uso terapêutico , Sepse/complicações , Amidas/química , Amidas/farmacologia , Animais , Transtornos da Coagulação Sanguínea/etiologia , COVID-19/patologia , COVID-19/virologia , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Coagulação Intravascular Disseminada/etiologia , Etanolaminas/química , Etanolaminas/farmacologia , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/metabolismo , Pulmão/patologia , Masculino , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Ácidos Palmíticos/química , Ácidos Palmíticos/farmacologia , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Ratos , Ratos Sprague-Dawley , SARS-CoV-2/isolamento & purificação , Sepse/patologia , Serina Proteases/metabolismo
17.
J Oleo Sci ; 70(12): 1693-1706, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34759110

RESUMO

Palm oil is the world's most commonly used vegetable oil and extracted both from fruit and seed of palm tree. However, its high saturated fatty acid content raised controversies over consumption of the oil. Few scientific findings suggest it as a risk factor for cardiovascular disease and increased consumer's awareness over healthy diet raised claim over it. So that, this article aimed to review literatures on palm oil extraction process and its positive and negative health consequences and besides suggest strategies for healthy diet. Literature search of relevant articles was conducted by using Google scholar, PubMed, Web of science, MEDLINE, World Health Organization library online catalogue, UNICEF library, Open access thesis and dissertations published between 2009 and 2021 explored. Study reports recommend that palmitic acid from vegetable source has less effect on blood total cholesterol and low density lipoprotein cholesterol level as compared to palmitic acid from animal source. In contrary tocotrienols of palm oil lowers blood bad cholesterol level by 7-38%. Moreover, palm oil triacylglycerol arrangement does not have a cardiovascular risk and evidences from available in vitro and in vivo studies are not sufficient enough to conclude palm oil as a causative agent for cardiovascular disease. For healthy diet consumers should avoid trans fatty acids, solid and semi solid oils. Finally, further studies recommended on mitigation strategies to minimize process induced toxicants of palm oil to acceptable level.


Assuntos
Doenças Cardiovasculares/etiologia , Dieta Saudável , Ácidos Graxos/efeitos adversos , Ácidos Graxos/análise , Manipulação de Alimentos/métodos , Óleo de Palmeira/química , Doenças Cardiovasculares/prevenção & controle , Colesterol/sangue , LDL-Colesterol/sangue , Comportamento do Consumidor , Humanos , Extração Líquido-Líquido/métodos , Ácidos Palmíticos/farmacologia , Fatores de Risco , Ácidos Graxos trans/efeitos adversos
18.
Inflammopharmacology ; 29(5): 1475-1486, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34468900

RESUMO

Novel treatment strategies are urgently required for osteoarthritis (OA). Palmitoylethanolamide (PEA) is a naturally occurring fatty acid amide with analgesic and anti-inflammatory effects. We aimed to examine its effect on OA and elucidate the molecular mechanism of actions in monosodium iodoacetate (MIA)-induced OA Sprague-Dawley rats. The experimental animals were divided into normal control group (injected with saline + treated with phosphate-buffered saline (PBS), NOR), control group (injected with MIA + treated with PBS, CON), 50 or 100 mg/kg body weight (BW)/day PEA-treated group (injected with MIA + treated with 50 or 100 mg of PEA/kg BW/day, PEA50 or PEA100), and positive control group (injected with MIA + treated with 6 mg of diclofenac/kg BW/day, DiC). The changes in blood parameters, body parameters, gene expression of inflammatory mediators and cytokines, knee thickness, and joint tissue were observed. Oral administration of PEA had no adverse effects on the BW, liver, or kidneys. PEA reduced knee joint swelling and cartilage degradation in MIA-induced OA rats. The serum levels of leukotriene B4, nitric oxide, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and prostaglandin E2 considerably reduced in the PEA100 group compared with those in the CON group. In the synovia of knee joints, the mRNA expression of iNOS, 5-Lox, Cox-2, Il-1ß, Tnf-α, and Mmp-2, -3, -9, and -13 apparently increased with MIA administration. Meanwhile, Timp-1 mRNA expression apparently decreased in the CON group but increased to the normal level with PEA treatment. Thus, PEA can be an effective therapeutic agent for OA.


Assuntos
Amidas/farmacologia , Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Etanolaminas/farmacologia , Osteoartrite/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Administração Oral , Amidas/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Relação Dose-Resposta a Droga , Etanolaminas/administração & dosagem , Ácido Iodoacético , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Masculino , Ácidos Palmíticos/administração & dosagem , Ratos , Ratos Sprague-Dawley
19.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445417

RESUMO

This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI.


Assuntos
Amidas/administração & dosagem , Lesões Encefálicas Traumáticas/tratamento farmacológico , Etanolaminas/administração & dosagem , Luteolina/administração & dosagem , Neurogênese/efeitos dos fármacos , Ácidos Palmíticos/administração & dosagem , Administração Oral , Adulto , Idoso , Amidas/farmacologia , Animais , Lesões Encefálicas Traumáticas/etiologia , Lesões Encefálicas Traumáticas/psicologia , Modelos Animais de Doenças , Quimioterapia Combinada , Etanolaminas/farmacologia , Feminino , Humanos , Luteolina/farmacologia , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Distribuição Aleatória , Aprendizagem Espacial/efeitos dos fármacos , Resultado do Tratamento
20.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073872

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Amidas/farmacologia , Citocinas/metabolismo , Etanolaminas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Amidas/uso terapêutico , Animais , Etanolaminas/uso terapêutico , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ácidos Palmíticos/uso terapêutico , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...